Поиск в словарях
Искать во всех

Физический энциклопедический словарь - история создания к. м.

 

История создания к. м.

история создания к. м.
В нач. 20 в. были обнаружены две (казалось, не связанные между собой) группы явлений, свидетельствующих о неприменимости механики Ньютона и классич. электродинамики к процессам вз-ствия света с в-вом и к процессам, происходящим в атоме. Первая группа явлений была связана с установлением на опыте двойственной природы света — дуализмом света (см. ниже); вторая — с невозможностью объяснить на основе классич. представлений существование устойчивых атомов, а также их оптич. спектры. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели, в конечном счёте, к открытию законов К. ж.

Впервые квант. представления (в т. ч. h) были введены в 1900 нем. физиком М. Планком в работе, посвящённой теории теплового излучения тел (см. Планка закон излучения). Существовавшая к тому времени теория теплового излучения, построенная на основе классич. электродинамики и статистич. физики, приводила к бессмысленному результату, состоявшему в том, что тепловое (термодинамич.) равновесие между излучением и в-вом не может быть достигнуто, т. к. вся энергия должна перейти в излучение. Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, предположив, что свет испускается не непрерывно (как это следовало из классич. теории излучения), а определёнными дискр. порциями энергии — квантами. Величина такого кванта энергии зависит от частоты света v и равна: ξ=h.

От этой работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся к 1927 окончат. формулировкой К. м. в двух её формах. Первая начинается с работы Эйнштейна (1905), в к-рой была дана теория фотоэффекта. Развивая идею

Планка, Эйнштейн предположил, что свет не только испускается и поглощается, но и распространяется квантами, т. е. что дискретность присуща самому свету: свет состоит из отд. порций — световых квантов, названных позднее фотонами. Энергия фотона ξ=h. На основании этой гипотезы Эйнштейн объяснил установленные на опыте закономерности фотоэффекта, к-рые противоречили классической (базирующейся на классич. электродинамике) теории света.

Дальнейшее доказательство корпускулярного хар-ра света было получено в 1922 амер. физиком А. Комптоном, показавшим экспериментально, что рассеяние света свободными эл-нами происходит по законам упругого столкновения двух ч-ц — фотона и эл-на (см. Комптона эффект). Кинематика такого столкновения определяется законами сохранения энергии и импульса, причём фотону наряду с энергией ξ=h следует приписать импульс p=h/= h/c, где  — длина световой волны. Энергия и импульс фотона связаны соотношением ξ=ср, справедливым в релятив. механике для ч-цы с нулевой массой покоя. Т. о., было доказано экспериментально, что наряду с известными волн. св-вами (проявляющимися, напр., в дифракции света) свет обладает и корпускулярными св-вами: он состоит как бы из ч-ц — фотонов. В этом проявляется дуализм света, его корпускулярно-волн. природа. Дуализм содержится уже в ф-ле ξ=h, не позволяющей выбрать к.-л. одну из двух концепций: энергия ξ относится к ч-це, а частота  явл. хар-кой волны. Возникло формальное логич. противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волн. природу, а для объяснения других — корпускулярную. По существу разрешение этого противоречия и привело к созданию физ. основ К. м.

В 1924 франц. физик Л: де Бройль, пытаясь найти объяснение постулированным в 1913 дат. физиком Н. Бором условиям квантования ат. орбит (см. ниже), выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой ч-це, независимо от её природы, следует поставить в соответствие волну, длина к-рой  связана с импульсом ч-цы р соотношением:

=h/p. (1)

По этой гипотезе не только фотоны, но и все «обыкновенные ч-цы» (эл-ны, протоны и др.) обладают волн. св-ва ми, к-рые, в частности, должны проявляться в дифракции ч-ц. В 1927 амер. физики К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию эл-нов. Позднее волн. св-ва были обнаружены и у др. ч-ц, и справедливость ф-лы де Бройля была подтверждена экспериментально (см.

Дифракция микрочастиц). В 1926 австр. физик Э. Шредингер предложил ур-ние, описывающее поведение таких «волн» во внеш. силовых полях. Так возникла волновая механика. Волн. ур-ние Шредингера явл. основным ур-нием нерелятив. К. м. В 1928 англ. физик П. Дирак сформулировал релятив. ур-ние, описывающее движение эл-на во внеш. силовом поле; Дирака уравнение стало одним из осн. ур-ний релятив. К. м.

Вторая линия развития (также являющаяся обобщением гипотезы Планка) начинается с работы Эйнштейна (1907), посвящённой теории теплоёмкости тв. тел. Эл.-магн. излучение, представляющее собой набор эл.-магн. волн разл. частот, динамически эквивалентно нек-рому набору осцилляторов. Испускание или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что испускание и поглощение эл.-магн. излучения в-вом происходят квантами с энергией h, можно выразить так: осциллятор поля не может обладать произвольной энергией, он может иметь только определ. значения энергии — дискр. уровни энергии, расстояние между к-рыми равно h. Эйнштейн обобщил идею квантования энергии осциллятора эл.-магн. поля на осциллятор произвольной природы. Поскольку тепловое движение тв. тел сводится к колебаниям атомов, то и тв. тело динамически эквивалентно набору осцилляторов. Энергия таких осцилляторов тоже квантованна, т. е. разность соседних уровней энергии должна равняться h, где  — частота колебаний атомов. Теория Эйнштейна, уточнённая П. Дебаем, М. Борном и Т. Карманом (Германия), сыграла выдающуюся роль в развитии теории тв. тел.

В 1913 Бор применил идею квантования энергии к теории строения атома, планетарная модель к-рого вытекала из результатов опытов англ. физика Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряж. ядро, в к-ром сосредоточена почти вся масса атома; вокруг ядра вращаются по орбитам отрицательно заряж. эл-ны. Рассмотрение такого движения на основе классич. представлений приводило к парадоксальному результату — невозможности существования стабильных атомов: согласно классич. электродинамике, эл-н не может устойчиво двигаться по орбите, поскольку вращающийся электрич. заряд должен излучать эл.-магн. волны и, следовательно, терять энергию; радиус его орбиты должен непрерывно уменьшаться, и за время ~ 10-8 с эл-н должен упасть на ядро. Это означало, что законы классич. физики неприменимы

253



к движению эл-нов в атоме, т. к. атомы не только существуют, но и весьма устойчивы.

Для объяснения устойчивости атомов Бор предположил, что из всех орбит, допускаемых Ньютоновой механикой для движения эл-на в электрич. поле ат. ядра, реально осуществляются лишь те, к-рые удовлетворяют определ. условиям квантования, требующим, чтобы величина действия для классич. орбиты была целым кратным постоянной Планка h. Бор постулировал, что, совершая допускаемое условиями квантования орбит. движение (т. е. находясь на определ. уровне энергии), эл-н не испускает световых волн. Излучение происходит лишь при переходе эл-на с одной орбиты на другую, т. е. с одного уровня энергии ξi на другой, с меньшей энергией ξk при этом рождается квант света с энергией

hik. (2)

Так возникает линейчатый спектр атома. Бор получил правильную ф-лу для частот спектр. линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирич. ф-л (см. Спектральные серии). Существование уровней энергии в атомах было непосредственно подтверждено Франка — Герца опытами (1913—14).

Т. о., Бор, используя квант. постоянную h, отражающую дуализм света, показал, что эта величина определяет также и движение эл-нов в атоме, законы к-рого существенно отличаются от законов классич. механики. Этот факт позднее был объяснён на основе универсальности корпускулярно-волн. дуализма.

Успех теории Бора, как и предыдущие успехи квант. теории, был достигнут за счёт нарушения логич. цельности теории: с одной стороны, использовалась Ньютонова механика, с другой — привлекались чуждые ей искусств. правила квантования, к тому же противоречащие классич. электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение эл-нов в сложных атомах (даже в атоме гелия), возникновение связи между атомами, приводящей к образованию молекулы, и др. «Полуклассич.» теория Бора не могла также ответить на вопрос, как движется эл-н при переходе с одного уровня энергии на другой. Дальнейшая разработка вопросов теории атома привела к убеждению, что движение эл-нов в атоме нельзя описывать в терминах (понятиях) классич. механики (как движение по определ. траектории, или орбите), что вопрос о движении эл-на между уровнями несовместим с хар-ром законов, определяющих поведение эл-нов в атоме, и что необходима новая теория, в

к-рую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома. В 1925 нем. физик В. Гейзенберг построил такую формальную схему, в к-рой вместо координат и скоростей эл-на фигурировали некие абстрактные алгебр. величины — матрицы; связь матриц с наблюдаемыми величинами (уровнями энергии и интенсивностями квант. переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита Борном и П. Иорданом (Германия). Так возникла матричная механика. Вскоре после появления ур-ния Шредингера была показана матем. эквивалентность волновой (основанной на ур-нии Шредингера) и матричной механики. В 1926 Борн дал вероятностную интерпретацию волн де Бройля (см. ниже).

Большую роль в создании К. м. сыграли работы Дирака, относящиеся к этому же времени. Окончат. формирование К. м. как последоват. теории с ясными физ. основами и стройным матем. аппаратом произошло после работы Гейзенберга (1927), в к-рой было сформулировано неопределённостей соотношение — важнейшее соотношение, освещающее физ. смысл ур-ний К. м., её связь с классич. механикой и другие как принципиальные вопросы, так и качеств. результаты К. м. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга.

Детальный анализ спектров атомов привёл к представлению (введённому впервые амер. физиками Дж. Ю. Уленбеком и С. Гаудсмитом и развитому швейц. физиком В. Паули) о том, что эл-ну, кроме заряда и массы, должна быть приписана ещё одна внутр. хар-ка — спин. Важную роль сыграл открытый Паули (1925) т. н. принцип запрета (Паули принцип, см. ниже), имеющий фундам. значение в теории атома, молекулы, ядра, тв. тела.

В течение короткого времени К. м. была с успехом применена к широкому кругу явлений. Были созданы теории ат. спектров, строения молекул, хим. связи, периодич. системы элементов, металлич. проводимости и ферромагнетизма. Дальнейшее принципиальное развитие квант. теории связано гл. обр. с релятив. К. м. Нерелятив. К. м. развивалась в осн. в направлении охвата разнообразных конкретных задач физики атомов, молекул, тв. тел (металлов, ПП), плазмы и т. д., а также совершенствования матем. аппарата и разработки количеств. методов решения разл. задач.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):